Refine Your Search

Topic

Search Results

Technical Paper

Transient Analysis of Engine Nano-Particles Using a Fast-Scanning Differential Mobility Particle Analyzer

2004-03-08
2004-01-0971
The characterization of engine particulate matter size distributions has become an important topic in the investigation of particulate matter formation, transport, and emission reduction technology. The majority of current size distribution analyses are conducted during steady state engine conditions. Although steady state analysis is valuable, most engines in mobile applications are operated under transient conditions, creating a demand for the transient state analysis of particulate emission patterns. In order to measure the instantaneous emissions of an engine under transient conditions, instrumentation must respond to the changing engine conditions as quickly as possible. In this study, a fast-scanning nanometer Aerosol Size Analyzer (n-ASA) was used to measure the emitted particles of a heavy duty diesel engine during transient simulations. The results showed patterns of PM emissions at key areas throughout the test.
Technical Paper

Transient Performance of Diesel Particulate Filters as Measured by an Engine Exhaust Particle Size Spectrometer

2005-04-11
2005-01-0185
The performance of diesel particulate filters (DPF) has historically been evaluated by gravimetric efficiency, which measures the mass of particulate matter (PM) trapped in the filters. This method does not measure the filtration efficiency at different PM size ranges and, therefore, cannot provide information on fractional performance of DPFs. This fact becomes significant because the adverse effects of diesel PM emissions on human health and the environment are size dependent. A previous study investigated the fractional performance of DPFs under steady state conditions using a scanning mobility particle sizer (SMPS). In the real world, however, nearly all engines operate under transient conditions. DPFs also have to perform under such conditions, so any measurement of performance must be able to react to quickly changing DPF conditions.
Journal Article

Understanding System- and Component-Level N2O Emissions from a Vanadium-Based Nonroad Diesel Aftertreatment System

2017-03-28
2017-01-0987
Nitrous oxide (N2O), with a global warming potential (GWP) of 297 and an average atmospheric residence time of over 100 years, is an important greenhouse gas (GHG). In recognition of this, N2O emissions from on-highway medium- and heavy-duty diesel engines were recently regulated by the US Environmental Protection Agency (EPA) and National Highway Traffic Safety Administration’s (NHTSA) GHG Emission Standards. Unlike NO and NO2, collectively referred to as NOx, N2O is not a major byproduct of diesel combustion. However, N2O can be formed as a result of unselective catalytic reactions in diesel aftertreatment systems, and the mitigation of this unintended N2O formation is a topic of active research. In this study, a nonroad Tier 4 Final/Stage IV engine was equipped with a vanadium-based selective catalytic reduction (SCR) aftertreatment system. Experiments were conducted over nonroad steady and both cold and hot transient cycles (NRSC and NRTC, respectively).
X